skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gonzalez, Frank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 22, 2026
  2. Abstract Homarine (N-methylpicolinic acid) is a ubiquitous marine metabolite produced by phytoplankton and noted for its bioactivity in marine animals, yet its microbial degradation pathways are uncharacterized. Here, we identify a conserved operon (homABCDER) that mediates homarine catabolism in bacteria using comparative transcriptomics, mutagenesis, and targeted knockouts. Phylogenetic and genomic analyses show this operon distributed across abundant bacterial clades, including coastal copiotrophs (e.g., Rhodobacterales) and open-ocean oligotrophs (e.g., SAR11, SAR116). High-resolution mass spectrometry revealed N-methylglutamic acid and glutamic acid as key metabolic products of homarine in both model and natural systems, with N-methylglutamate dehydrogenase catalyzing their conversion. Metatranscriptomics showed responsive and in situ expression of hom genes aligned with homarine availability. These findings uncover the genetic and metabolic basis of homarine degradation, establish its ecological relevance, and highlight homarine as a versatile growth substrate that feeds into central metabolism via glutamic acid in diverse marine bacteria. 
    more » « less
    Free, publicly-accessible full text available August 21, 2026